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Bonding Effects in Graphite 
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School o f  Physics, University of  Melbourne, Parkville, Victoria, Australia, 3052 

(Received 7 April 1977; accepted 26 July 1977) 

The planar bonding in graphite is interpreted in terms of the deformation density approach. The calculated 
ratio of the 100 and 110 structure factors is in good agreement with experimental results. This suggests 
possibly a general means of comparing bonding effects in structures where either the strength of the bonding 
or the atomic environment is similar and where the bonding parameters in one of the structures are known. 
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Introduction 

Goodman (1976) has measured the absolute structure 
factors of the 100 and 110 reflections in graphite by 
convergent-beam electron diffraction. These results 
support the earlier conclusion of Franklin (1950) that 
the 100 structure factor is larger than that calculated on 
the basis of the free-atom model. On the other hand, the 
110 structure factor was found to be smaller than the 
free-atom result. Comparison of the experimental 
values with those calculated using the Dirac-Slater 
spherical scattering factors of Cromer & Waber (1965) 
and the relativistic Hartree-Fock spherical scattering 
factors due to Doyle & Turner (1968), showed that 
neither model provides an adequate basis for the des- 
cription of bonded atoms in graphite. 

Failures of the spherical-atom approximation have 
been observed in a large number of structures; perhaps 
the most noted being the appearance of the forbidden 
222 reflection in the diamond structure (GSttlicher & 
W61fel, 1959). In some cases (e.g. Dawson, 1967a,b, c) 
deviations from the free-atom scattering factors have 
been explained by introducing symmetry-allowed de- 
formation functions. In the present work the defor- 
mation density is used to explain the observed 100 and 
110 structure-factor values. An empirical method is 
used for estimating the values of the exponents of the 
deformation terms and the third-order linear parameter 
is fixed by physical arguments. 

The deformation density in graphite 

The atomic charge density may be expanded as a 
series in symmetry allowed functions (Dawson, 1967a). 
The bonding between the planes in graphite is pre- 
dominantly of the van der Waals type (Lynch & 
Drickmayer, 1966) hence terms in the charge-density 
expansion corresponding to interplanar components 
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have been neglected in the following. Stewart (1972, 
1973a) has listed tesseral harmonic functions for all 
point groups; hence, retaining only intraplanar 
components to third order, leads to the expression 

p(r) =p(r )  + ~Pc.o(r) + ~pa.3(r) (la) 
where 

b°a~r2 1 -  exp ( -% r) (lb) 
~Pc'°(r)-- 24 

b3a~ t~pa,3(r)=--~ [uv2-- uZv] r3 exp(--a3r). (lc) 

(u,v,w) are hexagonal directional cosines (ao,b o) and 
(aa,b3) are respectively the zeroth and third-order 
bonding parameters and the subscripts c and a refer 
to the centrosymmetric and antisymmetric nature of the 
deformation terms. In the above, p(r) is the prepared 
spherical atom model, ~pc, o(r) represents a spherical 
expansion/contraction of the bonded atom relative to 
p(r), 6pa,3(r) is the angle-dependent deformation 
function corresponding to nearest-neighbour bonding 
within the atomic planes and both deformation terms 
are normalized to zero to conserve the atomic charge. 
Fourier transforming equations (1) then yields the 
atomic scattering factor expansion 

f (s)  = f ( s )  + ~fc,0(s) + i~fa,3(S), (2a) 

wheref(s)  is the free atom spherical scattering factor, 

4~rt~o 6pz [13ao 4 _  6a2p2_ 3p 4] 
6fc, o(s) = bo 3(a2o + p2)6 (2b) 

64na~p 3 
t~fa. 3(S)=--  b3H3 5(0t2 + p2)5 (2c) 

8(~-h) 
H 3 - - -  [2h z + 5hk + 2kZl (2d) 

27N 3 ag 

p = 2~zN = 4z~ sin 812. 
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a 0 is the lattice parameter in the basal plane and hkl are 
the Miller indices. 

The angular function n 3 shows that the 110 structure 
factor is independent of 6f~,3(s ) and is therefore 
influenced only by spherical deviations from the free- 
atom model. The 100 reflection, however, is affected 
by contributions from both deformation functions. 

P a r a m e t e r  e s t imate s  

Values of the exponents a 0 and a 3 were estimated from 
the results of an analysis of the bonding in silicon 
(Moss, 1977). Dawson (1967a,b,c) has observed that 
the ratio of the maximum of the third-order defor- 
mation function (i.e. the nearest-neighbour contribution 
to the bonding) to the interatomic distance in diamond, 
silicon and germanium is approximately constant. A 
similar scaling of the bonding wavefunctions with 
lattice parameter has been suggested by Reed & 
Eisenberger (1972) on the basis of a Compton-profile 
study of these structures. Extending this concept to the 
planar bonds in graphite and using a value of 0.4 for 
the ratio as determined for silicon, leads to the value 
for a 3 listed in Table 1. The zeroth-order exponent 
was chosen to give the same value for the ratio %/¢b as 
found in silicon (~ 1.2). As there appears to be very 
little justification for this choice, a second model was 
also constructed assuming a ratio of unity. 

The 110 structure factor, being independent of 
6fa,3(s) was used to determine b 0, by requiring the ex- 
perimental and calculated values to be the same. 

Phillips (1968) has estimated the bond charge in 
graphite to be twice that in diamond. Defining the 
charge redistributed into the bond region to be (cf. 
Dawson, 1967a) 

hi3 3nl4 cx3 

N3+= f f f 5p~,3(r)dr (3) 
@=00=n /4  r=0 

and assuming this to be twice the corresponding result 
in diamond (Stewart,-1973b), gave b 3 a s  listed in Table 
1. 

Table 1. Estimated bonding parameters in graphite 

Model (a) Model (b) 

¢i 0 6.5 5.6 
b 0 -0.03 -0.06 
a 3 5.6 5.6 
b 3 0.5 0.5 

Table 2. Calculated and experimental structure factors 

h k l Spherical d3 d03(a)  d03(b) 

1 0 0 3.08 3-65 3.55 3.47 
1 0 1 5.08 5.95 5.79 5-67 
1 1 0 7.40 7.40 7.27 7.27 
2 0 0 1.66 1.30 1.29 1.29 
2 0 1 2.83 2.26 2.23 2.24 

i F ( 1 0 0 ) i  
0.42 0.49 0.49 

IF(110)1 

Experimental* 

3.48 + 0.05 

7.27 + 0.15 

0.48 0.48 + 0-02 

* Goodman (1976). 

Table 1 and a similar notation for calculations using 
parameters (b). The relativistic Hartree-Fock (R-HF)  
model (Doyle & Turner, 1968) was used since this 
model had previously been employed for the analysis 
of silicon (Moss, 1977), upon which the estimates of 
the exponents were based. Anomalous dispersion was 
neglected and the lattice parameters and thermal 
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C a l c u l a t e d  b o n d i n g  effects  

Three different calculations of the bonding effects in 
graphite were made. The different models used are 
designated d3, d03(a) and d03(b) and correspond 
respectively to third-order deformations only, zeroth 
and third-order deformations using parameters (a) of 
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Fig. 1. Calculated Fourier difference map in the basal plane using 
the difference coefficients { F [ R - H F ]  - F[dO3(a)] }. Broken lines 
denote negative contours and the zero level is shown by the 
heavy line. 
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parameters of Trucano & C h e n  (1975) were assumed. 
The results of these calculations, together with the 
values of the ratio IF(IOO)I/IF(llO)I are given in 
Table 2. 

It is clear that the R - H F  model gives a poor basis 
for the description of the atomic charge density in 
graphite. Including only the third-order deformation 
term improves the agreement between the observed 
and calculated 100 structure factor values. Including the 
zeroth-order term further improves the agreement 
between the experimental and calculated results. The 
sign of the zeroth-order constant indicates a relaxation 
of the bonded atom relative to the R - H F  model, that 
is, charge is removed from the region close to the 
nucleus with a corresponding increase in the vicinity 
of the valence electrons. A similar effect has also been 
found in silicon (e.g. Aldred & Hart, 1973; Moss, 
1977; Price, Maslen & Mair, 1977). 

It is not possible, on the basis of the calculated 100 
structure factors of Table 2, to differentiate between 
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Fig. 2. Calculated Fourier difference map in the basal plane using 
the difference coefficients {F[R-HF] - F[dO3(b)]}. Contour 
intervals are the same as in Fig. 1. 

the two models employed for the zeroth-order bonding 
parameters. This is also indicated by the similarity 
of the Fourier difference maps shown in Figs. 1 and 2, 
calculated from parameters (a) and (b) respectively. 
In view of the small interatomic distance within the 
graphite planes, it is unlikely that different values of the 
exponents (t o and a 3 could be reliably detected. Where 
the separation of nearest neighbours is large, however, 
differences between models (a) and (b) become more 
pronounced and separate exponents become necessary 
as in the case of silicon. 

For all models the values of the 101, 200 and 201 
structure factors are significantly different from the 
spherical-atom values. It would therefore be extremely 
interesting to measure these reflections and compare 
them with the predictions listed in Table 2. 

Conclusions 

The agreement between the calculated and observed 
ratio of 100 and 110 structure factors is remarkably 
good, considering the approximate nature of the 
parameter estimates. The results are encouraging and 
suggest that this method of estimating the bonding 
parameters may have more general applicability. 
Where either the strength of bonding or the atomic 
environment in two structures is similar it may be 
possible, by such scaling, to predict the magnitude 
and nature of bonding in one from the known 
parameters of the other (cf. Bader, Beddell & Peslak, 
1973). 
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The Scattering of High-Energy Electrons. 
I. Feynman Path-Integral Formulation 

BY BING K. JAP AND ROBERT M. GLAESER 

Division of Medical Physics and Donner Laboratory, University of California, Berkeley, California 94720, USA 

(Received 24 February 1977; accepted 20 June 1977) 

The Feynma.n path-integral formulation of quantum mechanics is used to investigate the theoretical problem 
of the propagation of high-energy electrons through thin crystalline specimens. The primary objective is to 
find a satisfactory scattering approximation that accurately describes the transmitted (elastically scattered) 
wave, and still retains a mathematically invertible relation between the transmitted wave function and the 
specimen structure. It is shown that the path-integral method leads naturally to an invertible, higher-order, 
phase-object approximation, in addition to the usual kinematic approximation and the usual phase-object 
approximation. The higher-order phase-object approximation in turn leads to the noninvertible, multislice 
approximation of Cowley & Moodie, which had previously been derived by those authors from a semi- 
classical, physical-optics point of view. 

Introduction 

As early as 1928, Bethe developed the dynamical 
theory of electron diffraction. The theory gives, 
however, a solution which is highly complicated and 
also tedious to be applied to cases where more than 
two diffracted beams are considered. In subsequent 
years, the problem of dynamical scattering of electrons 
has been approached by a variety of theoretical 
methods, including the 'physical-optics' method of 
Cowley & Moodie (1957), an extension of Bethe's 
eigenvalue method (i.e. the Bloch wave method) by 
Howie & Whelan (1961), use of the Born series as 
developed by Fujiwara (1959), and use of the 
scattering-matrix method as given, for example, by 
Sturkey (1962) and by Fujimoto (1959). A full 
quantum-field theoretical method has also been applied 
(Ohtsukl & Yanagawa, 1966). A comparison of these 
approaches has recently been discussed in some 
detail by Goodman & Moodie (1974). Only recently 
have rigorous attempts been made to use the multislice 
dynamical theory of Cowley & Moodie (1957) for 
interpretation of electron images (Allpress, Hewat, 
Moodie & Sanders, 1972; Lynch, Moodie & O'Keefe, 
1975). Up to now the work has been limited to 
inorganic crystals. 

In this paper we present the derivation of four 
different high-energy electron-scattering approxima- 

tions, following the Feynman path-integral formulation 
of quantum mechanics. The four approximations are, 
in order of increasing complexity, the kinematic 
approximation, the phase-object approximation, a 
higher-order phase-object approximation (not pre- 
viously described) and the multislice approximation of 
Cowley & Moodie (1957). The conditions under which 
each of these approximations has a useful degree 
of validity is explored by representative, numerical 
calculations in the subsequent papers of the series. It 
is worth noting that these approximations, except for 
the multislice formulation, give an invertible relation 
between the transmitted wave function and the 
projected object potential. Thus the projected potential 
can be retrieved from the wave function, which can, 
in principle, be determined from the image intensities 
(see for example Misell, Burge & Greenaway, 1974; 
Lannes, 1976). 

The path-integral formulation of quantum mechanics 
developed by Feynman (1948) and Feynman & Hibbs 
(1965) appears to be a logical as well as an intuitive 
way of dealing with the scattering problem for high- 
energy electrons. The classical limit arises naturally in 
this formulation as a special case of quantum 
mechanics, when the quantities such as mass and 
velocity are so large that Planck's constant can be 
considered infinitesimal (Feynman & Hibbs, 1965). 
The path-integral formulation has been shown to be 


